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Abstract

Functional polymorphisms that alter gene expression and mRNA processing appear to play a critical role in shaping human phenotypic

variability. Intensive studies on polymorphisms affecting drug response have revealed multiple modes of altered gene function, frequently

involving cis-acting regulatory sequence variants. Experimental and in silico methods have advanced the search for such polymorphisms, but

considerable challenges remain. Here, a survey of polymorphisms in drug-related genes indicates that: (a) a substantial proportion of genetic

variability still remains unaccounted for; (b) a majority of these genes harbors known regulatory polymorphisms; and (c) a portion of

polymorphisms affect splicing and mRNA turnover. Pharmacogenetic optimiziation of individual drug therapy may require a complete

understanding of all functional sequence variants in key genes. This review surveys known noncoding polymorphisms in genes encoding

cytochrome P450s and other drug-metabolizing enzymes, drug transporters, and drug targets and receptors. Current methods and challenges

associated with the identification and characterization of functional polymorphisms are also discussed.
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1. Introduction

Regulation at the level of transcription initiation and RNA

processing defines downstream biological effects. Such

regulation occurs in cis, directly affecting the regulated gene,

but it can also act in trans by altering activity of downstream

genes (Fig. 1). Significant interindividual differences in gene

expression patterns are common and may result from both

environmental factors and cis- or trans-mediated genetic

effects (Singer-Sam et al., 1992; Enard et al., 2002; Whitney

et al., 2003; Pastinen & Hudson, 2004). There is growing

evidence for abundant polymorphisms in cis-acting sequen-

ces that influence gene expression (Rockman & Wray, 2002;
etic variability, involving cis- and trans-acting poly-

ing regulatory polymorphisms appear to outnumber

hisms in coding regions affecting protein sequence. If

hisms alter signaling or transcription factor activity,

g changes ensue. Epigenetic changes can mimic cis-

s. Lastly, epistatic effects (multiple interacting poly-

ely to play a role as well. Not shown are regulatory

mall RNAs, also subject to genetic variability.
Yan et al., 2002; Bray et al., 2003; Lo et al., 2003) and

indication that a significant portion of functional poly-

morphisms affect cis-acting regulatory elements (Stama-

toyannopoulos, 2004; Wittkopp et al., 2004). Identifying the

functional alleles that account for interindividual differences

remains difficult (Ioannidis, 2003; Page et al., 2003; Sun et

al., 2004). The genetic components of complex interindi-

vidual differences may require resolution of multiple modest

variations in genotype which collectively yield a recognize-

able phenotype such as disease susceptibility or drug

response.

Phenotypic differences can arise from genetic poly-

morphisms acting in cis by changing the protein coding

sequence or at the level of RNA (Day & Tuite, 1998):

affecting transcription (activation or inhibition through

regulatory sites or structure of regulatory elements), mRNA

processing, pre-mRNA splicing, exonic splicing enhancers

(ESEs), exon skipping (Cartegni et al., 2003), mRNA

stability (Sheets et al., 1990; Conne et al., 2000; Di Paola

et al., 2002; Tebo et al., 2003), mRNA trafficking, or

regulatory RNAs (Fig. 1). The most commonly studied

polymorphisms, nonsynonymous changes that alter amino

acid coding, appear in many cases insufficient to account for

interindividual differences in disease aetiology and response

to therapies. Further, it is estimated that functional poly-

morphisms that are cis-regulatory in the human genome

outnumber those that alter protein sequence, and that the

bulk of regulatory polymorphisms remain to be discovered

(Ng & Henikoff, 2002; Rockman & Wray, 2002; Stama-

toyannopoulos, 2004; Yan & Zhou, 2004). On the other

hand, genomewide linkage analysis with mRNA expression

as the quantitative trait demonstrates that interindividual

differences in mRNA profiles appear to be largely caused by

trans-acting factors (Morley et al., 2004). These statements

are not incompatible since a single cis-acting polymorphism

in a transcription factor or receptor could affect the

expression of numerous other genes (Fig. 1). Therefore, to
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understand consequences of genetic variations, we must first

determine whether interindividual differences of a protein’s

activity are caused by polymorphisms in cis or trans (or

both) or by environmental factors. If in cis, we must then

find the functional polymorphism(s) in the candidate gene

that can account for the observed variations and epistatic

interactions among them if several are present. If in trans,

we search for polymorphisms in trans-acting factors (e.g.,

transcription factors). Lastly, we must also consider epi-

genetic factors such as methylation, imprinting, and

chromatin structure modulation that can be transmitted

through the germline or observed in somatic cells without

alterations in the primary DNA sequence (Grewal &

Moazed, 2003; Yan & Zhou, 2004).

While many studies have addressed cis-regulatory

variations, it is likely that a majority of functional variants

are yet to be discovered. Novel techniques now enable

broad investigation of this type of variation, which is likely

to contribute substantially to knowledge of phenotypic

variability of pharmacogenetic relevance. Previous exten-

sive studies on cis-regulatory variations affecting disease

susceptibilities (e.g., Loktionov, 2004) inform our thinking

about functional variations with pharmacological-pharma-

cogenetic implications. Here, we review advances in the

discovery of cis-regulatory variations within genes encoding

drug-metabolizing enzymes, drug transporters, and drug

targets and receptors (Table 1).
2. Modes of cis-acting

polymorphisms and methods for discovery

2.1. Experimental methods for

discovering cis-acting polymorphisms

Measurement of sequence variants, primarily single

nucleotide polymorphisms (SNPs), provides the fundamen-

tal units for linking genetic sequence to traits. Most genes

harbor multiple sequence variations (e.g., SNPs, repeats,

indels) showing a broad range of frequencies and linkage

disequilibrium among them. In clinical genetic association

studies with goals to pinpoint candidate genes, selection of

polymorphisms yielding maximum information is difficult.

Confounding factors, such as their relative frequencies in

the targeted populations, population admixture, and the

effects of age and sex (Pinsonneault & Sadee, 2003),

account in part for the failure to replicate many association

studies. Most polymorphisms are nonfunctional and thus

serve as markers for functional alleles. Rather than using

single polymorphisms, associations are now often made

with the use of haplotypes, blocks of linked polymorphisms,

that may demarcate trait-significant cis-regions of sequence.

High-throughput SNP genotyping methods are now coming

online, such as SNPlex, capable of screening thousands of

SNP in many samples (Wenz, 2004). Such methods have

been used to establish haplotype maps on a genomewide
basis, including genes involved in drug metabolism, at

significant marker density (Kamatani et al., 2004). Despite

improvements in throughput for identification and associa-

tion of sequence variants, the search for the specific identity

of key regulatory variations is a difficult problem. Linking

polymorphisms to transcriptional regulation has tradition-

ally employed gene reporter constructs and in vitro DNA

protein factor binding assays. For example, haplotype-

specific chromatin immunoprecipitation (haploCHIP) takes

advantage of the relation between the amount of phosphory-

lated RNA polymerase II and transcriptional activity

(Knight et al., 2003). Via haploChIP, SNPs in regulatory

regions can be investigated in conjunction with variation in

transcription levels. However, these approaches provide

incomplete pictures because they lack the physiological and

structural context of a target tissue, or they currently lack

high-throughput capability.

More broadly, mRNA expression measured by micro-

arrays has been combined with genomewide linkage

analysis, taking the expression level of each gene as the

measured phenotype (Morley et al., 2004). Heritability of

gene expression phenotypes can be explored through

familial genotyping and transmission disequilibrium testing

in nuclear families (Spielman & Ewens, 1996) or pedigree

disequilibrium testing in larger pedigrees (Martin et al.,

2000). Using target tissues (such as immortalized lympho-

cytes) from family members, this type of analysis is capable

of distinguishing between cis- and trans-acting genetic

factors and shows an abundance of functional genomic loci

and a preponderance of trans-acting effects, as expected

(see Fig. 1). However, the technology suffers from low

sensitivity and therefore may limit the detection of func-

tional variations in target genes.

An alternative approach involves the analysis of allele-

specific expression in a relevant target tissue; each allele

experiences its own regulation in the same cellular environ-

ment, with the other allele (for autosomal genes) serving as

an internal control. As a result, the method controls for

tissue conditions, trans-acting factors, and other environ-

mental influences. Thus, SNPs in exonic and untranslated

regions of message, can serve as markers for allele

expression levels in individuals heterozygous for these

markers. Taking the human solute carrier family 15 (H+/

peptide transporter), member 2 gene (hPepT2) as one

example, our laboratory has recently described a method

for allele-specific measurement of mRNA expression

through primer extension incorporation of fluorescent

dideoxy-nucleotide terminating probes after RT-PCR ampli-

fication (Pinsonneault et al., 2004). Significant differences

in the relative abundance of each allele in mRNA from

kidney tissues demonstrated the presence of functional cis-

acting factors. The primer extension reaction can be

multiplexed (Bray et al., 2004) so that it will be possible

to search for functional cis-acting polymorphisms in a large

number of genes (Yan et al., 2002). Similar results can be

achieved through methods employed on other platforms



Table 1

Polymorphisms affecting gene regulation and mRNA processing

Gene*allele Type Functional reports Reference

CYP1A2*1C Enhancer (�3860GNA) A enzyme activity Nakajima et al., 1999

CYP1A2*1F Intron 1 (�163CNA) z enzyme induction Chida et al., 1999; Sachse et al., 1999;

Shimoda et al., 2002;

Nordmark et al., 2002

CYP1A2*1K Intron 1 Disrupt Ets BS, A RNA, metabolism Aklillu et al., 2003

CYP1A2*7 Intron 6 splice donor SNP

(3534GNA)

PM to clozapine (single individual) Allorge et al., 2003

CYP2A6*9 TATA Box A RNA, protein, enzyme activity Pitarque et al., 2001; Kiyotani et al., 2003;

Yoshida et al., 2003

CYP2A6*1D Enhancer (�1013ANG) A transcription (reporter assay) Pitarque et al., 2004

CYP2A6*1H, J Enhancer (�745ANG) Disrupt NF-Y BS, A transcription von Richter et al., 2004

CYP2A6*12 Intron 1 2A6/7 crossover A enzyme activity in vitro and in vivo Oscarson et al., 2002

CYP2B6*9 Splice variant Skip exons 4–6 Lamba et al., 2003

CYP2B6*1G Promoter (�750CNT) A RNA Lamba et al., 2003

CYP2B6*1B Enhancer (�2320TNC) A protein in Caucasian females Lamba et al., 2003

CYP2B6*1C ESE synonymous SNP A protein in Caucasian females Lamba et al., 2003

CYP2C9*6 Frameshift Null, severe toxicity Kidd et al., 2001

CYP2C19*2 Exon 5 splice variant PTC, PM phenotype De Morais et al., 1994a

CYP2C19*3 Exon 4 premature stop PTC, PM phenotype De Morais et al., 1994b

CYP2C19*4 Initiation codon Transcription ablation, PM Ferguson et al., 1998

CYP2C19*7 Intron 5 splice donor SNP

(IVS5+2 TNA)

PM phenotype Ibeanu et al., 1999

CYP2D6*4A-L Intron 3 splice variant PTC, PM phenotype Kagimoto et al., 1990

CYP2D6*11 Intron 1 splice acceptor PTC, PM phenotype Marez et al., 1995

CYP2D6*41 Promoter IM phenotype, z expression Lovlie et al., 2001; Zanger et al., 2001;

Gaedigk et al., 2003

CYP2D6 Intron 6 (2988GNA) IM phenotype prediction Raimundo et al., 2004

CYP2D6*44 Intron 6 splice donor SNP A enzyme activity Yamazaki et al., 2003

CYP2D7 138delT Pseudogene ORF, brain expression Pai et al., 2004

CYP2E1*1D Enhancer VNTR X transcription, z enzyme inducibility McCarver et al., 1998; Hu et al., 1999

CYP2J2*7 SP-1 BS (�76GNT) Disrupt SP-1 BS, A transcription King et al., 2002; Speicker et al., 2004

CYP3A4*1B Proximal promoter (�392ANG) Disrupt nifedipine-specific repressor Westlind et al., 1999; Spurdle et al., 2002;

Amirimani et al., 2003; Floyd et al., 2003

CYP3A4 Far upstream enhancer

(�11,129_�11,128 ins TGT)

Disrupt USF1BS, A expression Matsumura et al., 2004

CYP3A5*3 Exon 3B splice inclusion PTC, A protein, enzyme activity Kuehl et al., 2001; Hustert et al., 2001a

CYP3A5*6 Exon 7 (14690GNA) Splice defect, Exon 7 deletion Kuehl et al., 2001; Hustert et al., 2001a

CYP3A5*7 Exon 11 (27131 T ins) Predicted PTC and A protein Hustert et al., 2001a

CYP4F12*v1 Intron 1 (146 bp del) A transcription Cauffiez et al., 2004

CYP4F12*v2 9-SNP promoter allele A transcription Cauffiez et al., 2004

CYP7A1 Promoter (�204ANC) A response to atorvastatin Kajinami et al., 2004

CYP8A1*1D-F Promoter VNTRs z number SP-1 BS, z transcription Chevalier et al., 2002

UGT1A1*28 (TA5–8)TAA repeat A transcription, protein, enz act, z toxicity Bosma et al., 1995; Iyer et al., 2002;

Fang et al., 2004

UGT1A9*22 Promoter (T ins) z transcription Yamanaka et al., 2004

TPMT*V6a Promoter VNTRs A transcription, A in vivo activity, conflicting Spire-Vayron de la Moureyre et al., 1999;

Yan et al., 2000; Alves et al., 2001

NAT1*16 3VUTR AAA ins+CNA A protein, A in vitro activity,

disrupt predicted RNA structure

de Leon et al., 2000

ADH4 Promoter (�75ANC) A transcription Edenberg et al., 1999; Iida et al., 2002

ABCB1 Synonymous (3435CNT) A RNA, protein, drug transport activity Hoffmeyer et al., 2000;

Sakaeda et al., 2001

ABCB1 Promoter haploypes z transcription Takane et al., 2004

SLC6A4 5VHTTLPR (14 repeats) A RNA, protein, transport activity Heils et al., 1996; Heinz et al., 2000;

Hranilovic et al., 2004

SLC6A4 3VUTR PolyA No quantitative assay Battersby et al., 1999

SLCO1B1*17 Upstream promoter z pravastatin clearance Niemi et al., 2004

TSER*3 Promoter VNTR z RNA, Poor 5-FU treatment outcome Horie et al., 1995; Villafranca et al., 2001;

Marsh et al., 2001

TSER*3RG SNP in 2nd VNTR Disrupt USF-1 binding site Mandola et al., 2003

TYMS 3V UTR (1494 6bp del) A RNA, A stability, A intratumoral protein Ulrich et al., 2000; Mandola et al., 2004

A.D. Johnson et al. / Pharmacology & Therapeutics 106 (2005) 19–3822



Table 2

Polymorphism databases and related tools

Resource name URL reference

ARED (AU-rich element database) rc.kfshrc.edu.sa/ared

CeleraSNPs (proprietary)

CGAP gai.nci.nih.gov

CREATE pharmacogenetics.wustl.edu

dbSNP www.ncbi.nlm.nih.gov/SNP

Environmental Genome DB www.niehs.nih.gov/envgenom

GeneSNPs www.genome.utah.edu/genesnps

Human Gene Mutation DB (Cardiff) www.hgmd.org

HGVbase hgvbase.cgb.ki.se

Human Genome Variation Society www.hgvs.org

Hapmap Project www.hapmap.org

Innate Immunity PGA innateimmunity.net

JSNP Database snp.ims.u-tokyo.ac.jp

Perlegen (proprietary)

PharmGKB www.pharmgkb.org

PromoLign polly.wustl.edu/promolign/

main.html

PupaSNP pupasnp.bioinfo.cnio.es

ReguLign polly.wustl.edu/regulign/

default.html

Seattle SNPs (UW-FHCRC) pga.mbt.washington.edu

SIFT blocks.fhcrc.org/sift/SIFT.html

The SNP Consortium snp.cshl.org

Web references for tools and databases useful in finding and characterizing

functional cis-regulatory polymorphisms.

Gene*allele Type Functional reports Reference

HTR2A Synonymous (102CNT) (Conflicting reports on functionality) Arranz et al., 1998; Bray et al., 2004

HMGCR(SNP3) Intron 5 A response to pravastatin Chasman et al., 2004

HMGCR(SNP29) Intron 15 A response to pravastatin Chasman et al., 2004

MMP3 Promoter (�1171 5AN6A) A expression, A response to pravastatin de Maat et al., 1999

LIPC Promoter (�480CNT) Disrupt USF BS, A transcription,

A enzyme activity, A response to treatments

Botma et al., 2001;

Zambon et al., 2001

ACE Intron 16 (287 bp ins) A response to fluvastatin Marian et al., 2000

PTP1B 3V UTR (1484 ins G) z RNA, z mRNA stability Di Paola et al., 2002

hGRg 3VUTR AUUUA SNP z mRNA stability, z protein Schaaf et al., 2002

Polymorphisms with gene, allele denoted after d*T (if defined), the type of genetic alteration (if an allele defined by a single SNP exists, then the position and

base change are given), reported functional observations, and related literature references.

Table 1 (continued)
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(Wojnowski & Brockmoller, 2004) including the use of

matrix-assisted laser desorption/ionization time-of-flight

spectroscopy (MALDI-TOF; Ding et al., 2004) and allele-

specific RT-PCR methodologies (Zhang et al., 2004). These

techniques may be extended to unprocessed heterogeneous

nuclear RNA (hnRNA) if exonic and untranslated markers

are unavailable and hnRNA is abundant enough in the target

samples (Hirota et al., 2004).

Taken together, these approaches allow rapid determi-

nation of the extent of cis- or trans-genetic variation in a

locus and the heritibility of that component. Further

determination of the functional alleles is challenging

because regulatory regions span across large genomic

DNA segments. Therefore, in silico methods have proven

helpful.

2.2. In silico methods for

discovering cis-acting polymorphisms

Bioinformatics complements experimental investiga-

tions of regulatory polymorphisms, allowing investigators

to interpret whether polymorphisms exist in a sequence

region with predicted functional importance (Wasserman

& Sandelin, 2004). Table 2 provides weblinks for tools

and databases. Most tools employ phylogenetic foot-

printing to compare regions of sequence conservation that

may highlight regulatory regions and then match these

sequences against models predicting transcription factor

binding sites (BSs). Pharmacogenetics-centered examples

can be found in conjunction with the comprehensive

research on expressed alleles in therapeutic evaluation

(CREATE) website (Table 2: PromoLign, ReguLign). This

general approach provides improvements over earlier

methods but still fails to identify many regulatory sites

(Wasserman & Sandelin, 2004). Acknowledging the

combinatorial nature of factors binding regulatory regions,

some tools use combinations of cis-regulatory modules

(CRM) for specific tissues or gene types to make

successful predictions (Liu et al., 2003).

A recent tool, PupaSNP, integrates available information

on the potential for individual SNPs to alter expression or

function (Conde et al., 2004). PupaSNP takes into account

predicted transcription factor binding sites, intron/exon
boundaries, predicted ESEs (Cartegni et al., 2003), amino

acid changes in predicted motifs, and additional annotation

information. ESE prediction is of interest since defects in

splicing represent cis-regulatory variants, constitute a small

but significant portion of known disease-causing mutations

(Cooper & Mattox, 1997), and provide potential therapeutic

targets (Sierakowska et al., 1996).

Posttranscriptional mRNA turnover represents another

potentially important cause of genetic variability arising

from cis-polymorphisms. mRNA stability can fluctuate

through modulation of a number of pathways and changes

in RNA structure and protein-RNA binding sites. For

example, destabilizing adenylate-uridylate-rich sequence

elements (ARE) are found in the 3V untranslated regions

(3VUTR; Tebo et al., 2003) of 5–8% of human genes

(Bakheet et al., 2003). Mutations in these elements are

linked to disease pathology in human insulin resistance and

have been suggested as stratifiers for administration of
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protein tyrosine phosphatase, nonreceptor type 1 (PTP1N)

inhibitors (Di Paola et al., 2002). Human glucocorticoid

receptor beta (hGRh) acts as a dominant negative factor for

the steroid-responsive human glucocorticoid receptor alpha

(hGRa, Bamberger et al., 1995), and increased hGRh
expression has been associated with steroid resistance in

asthmatics (Hamid et al., 1999; Sousa et al., 2000). A SNP

in the 3VUTR of hGRh disrupts an ATTTA motif and leads

to increased mRNA stability suggesting the functional cause

of steroid resistance (Derijk et al., 2001; Schaaf &

Cidlowski, 2002). AREs collected in a database (Bakheet

et al., 2003) demonstrate how the identification of con-

sensus motifs and novel regulatory elements in combination

with integrated genomic polymorphism databases may

allow parallel characterization of functional polymorphisms.

Further effects of dsilentT polymorphisms in transcribed

regions will likely be uncovered as methods improve for the

difficult problem of predicting RNA tertiary structure (Chen

et al., 1999; Zuker, 2003). Silent mutations predicted to

change mRNA folding in drug-related genes have previ-

ously been supported experimentally: dopamine D2 receptor

(Drd2; Duan et al., 2003) and NAT1 (de Leon et al., 2000).

Newer algorithms that include evolutionary weighting

schemes will likely lead to further experimentally validated

examples (e.g., comRNA; Ji et al., 2004).
3. Drug-metabolizing enzymes

Numerous genes encoding proteins involved in drug

metabolism and transport have been categorized, and

nomenclature of polymorphic variations is being stand-

ardized (see Table 3 for references). Accounting for the

largest proportion of genetic variation affecting drug therapy

are the cytochrome P450s, a large, highly polymorphic

family of heme-containing mono-oxygenases (http://

www.imm.ki.se/CYPalleles/; Rendic, 2002; Guengerich,

2004). The human genome encodes at least 57 cytochrome

P450s and contains 58 cytochrome P450 pseudogenes

(Nelson et al., 2004), which are organized into 18 families

(enzymes sharing N40% identity) and 43 subfamilies
Table 3

Nomenclature guides for selected human gene families and alleles

Gene class URL reference

Alcohol dehydrogenases www.gene.ucl.ac.uk/nome

Aldehyde dehydrogenases www.aldh.org/

Arylamine N-acetyltransferases www.louisville.edu/medsc

Cytochrome P450s www.imm.ki.se/CYPallele

Dihydropyrmidine dehydrogenase (none available)

Organic anion transporting polypeptides www.bioparadigms.org/slc

(see Glatt & Meinl, 2004

Sulfotranferases

UDP glucuronosyltransferases som.flinders.edu.au/FUSA

Literature and web references for gene and allele nomenclature of families with

families.
(enzymes sharing N55% identity). The most important

cytochrome P450s involved in drug metabolism are the

members of the CYP1, CYP2, and CYP3 families (Dan-

ielson, 2002). Comprehensive cytochrome genotyping

assays are becoming feasible and are now applied in

pharmaceutical trials, but a key question is whether we

have sufficiently determined the bulk of the functional

alleles in human populations. Many alleles have been

reported, but there is an inherent bias toward sequencing

and genotyping of coding regions. As a result, a portion of

phenotypic variation remains unaccounted for by genetic

factors. Large-scale sequencing projects continue to reveal

noncoding alterations that could affect expression and

function of drug-relevant genes (Iida et al., 2001b; Adjei

et al., 2003; Aklillu et al., 2003; Allorge et al., 2003; Saito et

al., 2003; Blaisdell et al., 2004; Cauffiez et al., 2004;

Fukushima-Uesaka et al., 2004; Murayama et al., 2004).

Table 1 lists known functional noncoding polymorphisms,

which include crucial drug-relevant functional alleles.

3.1. Cytochrome 1 family

CYP1A2 has roles in metabolism of clozapine, para-

cetamol, phenacetin, theophylline, imipramine, and tacrine

and is generally probed with caffeine since it specifically

demethylates this substrate. There is evidence for a number

of functional, noncoding alleles in the sequence of CYP1A2.

A moderately frequent single nucleotide change at a

demonstrated protein binding site in the enhancer region

(CYP1A2*1C allele) correlates with a decrease in enzyme

activity (Nakajima et al., 1999). A single base change

(�163CNA) in intron 1 (CYP1A2*1F), occurring frequently

in a Japanese population (Chida et al., 1999), is correlated

with high enzyme induction in Caucasians (Sachse et al.,

1999). However, a study on the plasma concentrations of

haloperidol in Japanese schizophrenics carrying

CYP1A2*1F (Shimoda et al., 2002) and another on Swedish

pregnant women with the same allele (Nordmark et al.,

2002) dispute this connection. Another polymorphism in

intron 1 (�729CNT) was found in an Ethiopian population

10 base pair (bp) upstream from one previously reported
Reference

nclature/genefamily/ADH.shtml Duester et al., 1999

Vasilou et al., 1999

hool/pharmacology/NAT.html Hein et al., 2000

s/ Nelson et al., 2004

McLeod et al., 1998

/

for amino acid changing alleles)

Hagenbuch & Meier, 2004

Blanchard et al., 2004;

Glatt & Meinl, 2004

/ClinPharm/UGT/ Mackenzie et al., 1997

pharmacogenetic importance. Definitive allele lists are not available for all

http://www.imm.ki.se/CYPalleles/
http:www.gene.ucl.ac.uk/nomenclature/genefamily/ADH.shtml
http:www.aldh.org/
http:www.louisville.edu/medschool/pharmacology/NAT.html
http:www.imm.ki.se/CYPalleles/
http:www.bioparadigms.org/slc/
http:som.flinders.edu.au/FUSA/ClinPharm/UGT/
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(�739TNG; Aklillu et al., 2003). This novel allele

(CYP1A2*1K) associates with decreased in vivo metabo-

lism, decreased expression in reporter constructs, and

disruption of binding within intron 1 by a member of the

E twenty six (Ets) family of proteins (Aklillu et al., 2003).

The results suggest that the discrepancy between previous

intron 1 studies may be due to failure to completely

determine haplotype structures since CYP1A2*1K

(�163CNA, �729CNT, �739TNG) was shown to be func-

tionally significant, but CYP1A2*1F (�163CNA) and

CYP1A2*1J (�163CNA, �739TNG) were not. Another

SNP (3534GNA) in the donor splice site of intron 6

(CYP1A2*7) was suggested to account for extremely high

clozapine concentrations at normal doses in a single

individual, but this has not been replicated (Allorge et al.,

2003). These results illustrate difficulties in assigning

functional properties to polymorphisms in regulatory

regions and combinations of polymorphisms in haplotypes

and, moreover, in relating them to pharmacokinetic differ-

ences in vivo where more than one factor contributes to the

phenotype.

3.2. Cytochrome 2 family

CYP2A6 accounts for approximately 10% of human

liver microsome CYPs and is the major player in oxidation

of nicotine, cotinine, and a few pharmaceuticals (e.g.,

fadrozole, halothan, losigamone, letrozole, methoxyflurane,

SM12502; Pelkonen et al., 2000). Interindividual expression

levels vary more than 10-fold and are attributed to

environmental and genetic factors, with Asian populations

having a high proportion of poor metabolizers (PMs;

Pelkonen et al., 2000). An uncommon allele (CYP2A6*12)

results in a crossing over event between CYP2A6 and

CYP2A7 in intron 2, addition of 10 amino acids and

subsequently lower 7-hydroxylation activity of the enzyme

(Oscarson et al., 2002). A TATA box allele (CYP2A6*9)

with ~23% frequency in Asian populations and ~5% in

Caucasians correlates with lower expression level (mRNA

and protein) and enzyme activity (Pitarque et al., 2001;

Kiyotani et al., 2003). Recently an additional functional

promoter allele (CYP2A6*1D) with high prevalence in

Caucasians has been described which appears to disrupt an

enhancer element in reporter assays (Pitarque et al., 2004).

A novel regulatory polymorphism (CYP2A6*1H) that

disrupts binding of nuclear transcription factor Y (NF-Y)

to the CYP2A6 enhancer region affects expression and was

assayed alone and in combination with CYP2A6*1D

(CYP2A6*1J; von Richter et al., 2004).

The proteins encoded by CYP2C genes account for

approximately 20% of the total liver cytochrome P450

content in humans (Imaoka et al., 1996) and are responsible

for metabolizing approximately 20% of clinically adminis-

tered drugs. CYP2C19 is the cytochrome P450 isoform

primarily responsible for metabolism of the anticonvulsant

agent (S)-mephenytoin. Individuals can be characterized as
either extensive metabolizers (EMs) or PMs. The PM

phenotype occurs in 2–5% of Caucasian populations and

18–23% of Asian populations (Kupfer & Preisig, 1984;

Nakamura et al., 1985). The major genetic defect respon-

sible for the CYP2C19 PM phenotype is a single base pair

(681GNA) mutation in exon 5 of CYP2C19 (CYP2C19*2),

which creates an aberrant splice site. This alters the reading

frame of the mRNA starting with amino acid 215 and

produces a premature termination codon (PTC) 20 amino

acids downstream, resulting in a truncated nonfunctional

protein (De Morais et al., 1994a, 1994b). Another SNP

(636GNA; CYP2C19*3) in exon 4, also creates a PTC and is

responsible for the PM phenotype in Japanese populations

but not in Caucasian populations (De Morais et al., 1994a,

1994b). The PM phenotype in Caucasian populations is also

partially explained by other SNPs: disruption of the ATG

initiation codon (change to GTG; CYP2C19*4; Ferguson et

al., 1998), changes in amino acids (CYP2C19*5A,

CYP2C19*5B, CYP2C19*6), and a single nucleotide

transversion (intronic splice site variation [IVS]5+2TNA)

in the GT 5V donor splice site of intron 5 (CYP2C19*7;

Ibeanu et al., 1999). Overall, variations in splicing contrib-

ute to a significant extent to the PM phenotype.

CYP2C9 is the most highly expressed member of the

CYP2C subfamily in hepatic tissue, and metabolizes 16% of

drugs in current clinical use, including some drugs with

narrow therapeutic indices such as the hypoglycemic

tolbutamide, the anticonvulsant phenytoin, and the anti-

coagulant (S)-warfarin (Schwarz, 2003). Several SNPs that

change amino acids and result in reduced enzyme activity

have been identified and associated with adverse drug

reactions or toxicity to drugs metabolized by CYP2C9

(Aithal et al., 1999; Lee et al., 2002; Ho et al., 2003;

Schwarz, 2003). The deletion of an adenine at base pair 818

of the mRNA causes frame shift and yields a nonfunctional

protein (CYP2C9*6; Kidd et al., 2001). While the allele

frequency of this variant is b1%, it has been associated with

toxicity after treatment with normal doses of phenytoin

(Kidd et al., 2001).

CYP2D6 is the most polymorphic cytochrome gene,

constitutes 2% of total hepatic cytochrome P450 content

(Shimada et al., 1994; Imaoka et al., 1996), and supports

oxidative metabolism of more than 70 pharmaceuticals.

Genetic polymorphisms in the coding region of the

CYP2D6 gene have been extensively investigated (see

review Zanger et al., 2004). More than 70 SNPs have been

identified so far, and the focus has been on the coding

region and mRNA splice sites that are responsible for the

PM phenotype (7–10% in Caucasian populations and ~1%

in Asian populations; Zanger et al., 2004). One of the main

functional defects, a splicing defect mutation (1846GNA;

CYP2D6*4, with an allele frequency of 20–25%) in the

intron 3/exon 4 boundary causes a shift of the consensus

acceptor splice site of the third intron by one base pair,

yielding a spliced mRNA with one additional base, an

altered reading frame and a PTC (Kagimoto et al., 1990).
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Other genetic mechanisms for null alleles include frame

shifts resulting from single or multiple base pair insertion

or deletion (CYP2D6*3, CYP2D6*6, CYP2D6*15,

CYP2D6*19, CYP2D6*20, CYP2D6*38, CYP2D6*42;

Kagimoto et al., 1990; Saxena et al., 1994; Sachse et al.,

1996; Marez-Allorge et al., 1999), a SNP that creates a

PTC (CYP2D6*8; Broly et al., 1995), and other splicing

defect mutations (CYP2D6*11, CYP2D6*44; Marez et al.,

1995; Yamazaki et al., 2003), in addition to entire gene

deletion (CYP2D6*5) or duplications (Gaedigk et al.,

1991) and amino acid changes (CYP2D6*7,12; Evert et

al., 1994; Marez et al., 1996). However, only a few SNPs

in the promoter region have been identified, and pheno-

typic consequences have not been demonstrated. Since

dnormotypicT CYP2D6 carriers still display large variations

in metabolic capacity, including the intermediate metabo-

lizer (IM) phenotype, we need to discern whether this is

due to yet unrecognized polymorphisms acting in cis or

trans, or to enzyme induction effects. A SNP in the

promoter region (�1548CNG) within the CYP2D6*41

allele has been associated with CYP2D6 expression, with

the G allele correlating with higher levels of expression

(Lovlie et al., 2001; Zanger et al., 2001). However,

because this SNP is in linkage with other SNPs known

to affect expression (Raimundo et al., 2000), it is not clear

which is functional. The mutation has been used as a

marker to rule out CYP2D6 PM status (Gaedigk et al.,

2003). An intron 6 SNP (2988GNA) with a frequency of

8.4% in Caucasians was found to be an improved

predictive marker for the IM phenotype over CYP2D6*41

(Raimundo et al., 2004).

Although most frameshift mutations in cytochrome P450

genes cause nonfunctional proteins, a frameshift mutation in

the CYP2D7 pseudogene generates a functional enzyme (Pai

et al., 2004). This common single base pair deletion

(138delT) generates an open reading frame in the CYP2D7

pseudogene and a spliced variant containing partial inclusion

of intron 6. This transcript produces a functional protein, that

is expressed in the brain, but not liver or kidney. The variant

CYP2D7 metabolizes codeine to morphine more efficiently

than CYP2D6 in Neuro2a cells and also colocalizes with A-
opoid receptors in brain tissue, suggesting a possible role in

metabolism at the drug site of action.

Less than 1% of hepatic cytochrome P450 content is due

to CYP2B6, yet it is involved in the metabolism of ~70

clinically employed drugs, including alfentanil, ketamine,

bupropion, verapamil, tamoxifen, efavirenz, and drugs of

abuse such as methylenedioxymeth-amphethamine and

nicotine (Lang et al., 2001). CYP2B6 activity in liver

microsomes varies more than 100-fold among different

individuals (Yamano et al., 1989; Ekins et al., 1998), with

female subjects having higher levels of mRNA, protein and

enzyme activity than males (Lamba et al., 2003). Large

interracial differences are also observed for CYP2B6 with

Hispanic females having higher CYP2B6 activity than

Caucasian or African-American females (Lamba et al., 2003).
Many variants have been identified for CYP2B6 includ-

ing mRNA splice variants (Lamba et al., 2003). These

variants paint a complex picture because multiple poten-

tially functional polymorphisms are found in linkage and

thus produce epistatic interactions. The most common splice

variant skips exons 4–6 (CYP2B6*9), while others lack the

first 29 bp of exon 4 or contain an intron 3 insertion.

Because of the presence of PTCs, all of these variants

encode truncated proteins. A nonsynonymous SNP in exon

4 (15631GNT) that disrupts an ESE and a SNP (15582CNT)

in an intron 3 branch site are correlated with these splicing

variants. Several SNPs in the promoter region have also

been reported. The �750TNC SNP (CYP2B6*1G) corre-

lates with lower levels of expression. The �2320TNC SNP

(CYP2B6*1B) in the hepatocyte nuclear factor 4 (HNF4)

binding site in the promoter and the SNP in the intron 3

branch point (15582CNT) show a high degree of linkage

disequilibrium and associate with low quantities of CYP2B6

protein in Caucasian females. Recently, several missense

SNPs forming null alleles were identified, but their

combined frequency is only 2.6% in a Caucasian population

(Lang et al., 2004). In combination these genetic variants do

not fully explain the phenotypic variability in CYP2B6

activity. Because CYP2B6 expression is correlated with

constitutive androstane receptor (CAR) expression (Lamba

et al., 2003), it is possible that polymorphisms in the CAR

gene might affect CYP2B6 expression in trans. Recently,

several novel tissue-specific variant isoforms of CAR have

been identified (Lamba et al., 2004), but their association

with CYP2B6 expression remains to be established.

3.3. Cytochrome 3 family

The CYP3A subfamily of proteins is highly homologous

but exhibits wide tissue expression differences, implying a

diversity of regulatory control. CYP3A4 is a critical enzyme

because it is involved in the metabolism of over 30% of

clinically used drugs including cyclosporin, erythromycin,

and nifedipine. Interindividual expression differences of

CYP3A4 in liver are substantial and have not been

sufficiently ascribed to known functional polymorphisms

(Hirota et al., 2004). Principal among these has been a

promoter mutation (CYP3A4*1B) that disrupts a nifedipine-

specific repressor element (Westlind et al., 1999; Amirimani

et al., 2003) which has been suggested to associate with

treatment-related leukemia (Felix et al., 1998). However,

different reporter constructs and confounding results suggest

the need for consideration of a more complex regulatory

picture (Spurdle et al., 2002; Floyd et al., 2003). Clarifica-

tion of polymorphic trans-factors also provided insufficient

explanation (Zhang et al., 2001). A recent attempt to

elucidate genetic components of variation scanned up to

13 kilobase (kb) upstream of CYP3A4 and found a novel far

upstream enhancer element with a polymorphism

(�11,129_�11,128 ins TGT) that disrupts a upstream

transcription factor 1 (USF1) binding site and reduces
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expression, but is relatively uncommon (3.1%) in a French

population (Matsumura et al., 2004). The complexity of the

yet unfolding regulatory story of CYP3A4 underlies the

importance of careful analysis of regulatory regions and the

need for application of new technologies to resolve the

nature and extent of genetic factors contributing to

variabilities in expression and activity.

Polymorphic CYP3A5 expression may also contribute to

interindividual and interracial differences in CYP3A-

dependent drug clearance (Kuehl et al., 2001). CYP3A5

was formerly considered to be an extraheptic enzyme

(Wrighton et al., 1989; Schuetz et al., 1992; Murray et al.,

1995; Haehner et al., 1996; Kivisto et al., 1996), only

sporadically found in the liver tissue of some individuals

(Wrighton et al., 1989). Kuehl et al. (2001) discovered a

SNP (6986ANG) in intron 3 (CYP3A5*3) creates a cryptic

splice site and an extra exon (exon 3b) and is responsible for

polymorphic expression of CYP3A5 in the liver. This

CYP3A5*3 allele encodes an aberrantly spliced mRNA

with a PTC resulting in an unstable mRNA and no

detectable CYP3A5 mRNA and protein in the liver. The

allele frequency of CYP3A5*3 is reported to be 75.9% in a

Japanese population (Saeki et al., 2003) and ~73% in an

African-American population (Hustert et al., 2001a).

CYP3A4 and CYP3A5 have overlapping substrate specific-

ity (Bargetzi et al., 1989; Gorski et al., 1994; Guitton et al.,

1997), and CYP3A5 can represent over 50% of the total

hepatic CYP3A content in some individuals (Kuehl et al.,

2001). Thus, genetic polymorphism of CYP3A5 may play a

role in the variability in CYP3A targeted drug response, in

some human populations.

3.4. Other cytochromes

Other human cytochrome genes have reported functional

regulatory polymorphisms, and their diversity indicates that

more will likely be uncovered. A relatively new family of

cytochromes, CYP4F, contains members important for

inflammation physiology. CYP4F12 is expressed in liver

and intestine and N-hydroxylates eicosanoids, fatty acids,

and antihistamines (e.g., ebastine; Bylund et al., 2001;

Hashizume et al., 2001). Cauffiez et al. (2004) recently

published the first study of the CYP4F12 promoter region

and revealed 2 alleles (CYP4F12*v1, CYP4F12*v2) com-

mon in the French population that associate with signifi-

cantly reduced expression levels in HepG2 cells (Cauffiez et

al., 2004). CYP4F12*v1 is a 192 bp deletion in intron 1

(21% frequency) that diminishes expression. CYP4F12*v2

is a nine SNP-phased haplotype (8.5% frequency) which

also associates with lower expression. In silico analysis

suggests functional sites within these alleles, but further

characterization is needed. The extrahepatically expressed

CYP2J2 metabolizes diclofenac, bufuralol, and astemizole

and contains a common mutation in a putative Sp1

transcription factor (SP-1) site (King et al., 2002). Contrary

to previous reports the functional effects of this SNP were
only speculated upon after discovery, while effects for less

common amino acid changes were actually investigated.

However, a recent article verifies that CYP2J2*7 disrupts an

SP-1 binding site and reduces transcription significantly

(Speicker, 2004). Other proposed functional CYP poly-

morphisms include variable number tandem repeats

(VNTRs) in the 5V regulatory regions of CYP2E1

(McCarver et al., 1998; Hu et al., 1999) and CYP8A1

(Chevalier et al., 2002), and point mutation in the CYP7A1

promoter recently linked with reduced response to atorvas-

tatin (Wang et al., 1998; Kajinami et al., 2004). Taken

together the mutational record of the CYP superfamily

argues for extensive consideration of regulatory mutations

in all families critical to pharmacology and disease.

3.5. Other classes of drug-metabolizing enzymes

Drug-metabolizing enzymes other than the cytochromes

also display significant interindividual allelic differences.

Non-CYP genes and their variations may play increasingly

important roles as pharmaceutical companies design drugs

that evade the challenges of cytochrome variability (Ingel-

man-Sundberg, 2001). The cluster of UDP-glucuronosyl-

tranferase-1 (UGT1) genes (UGT1 superfamily) at 2q37

exhibits exon sharing and harbors identified promoter and

missense mutations that have been associated with 2- to 6-

fold lower conjugation activity (Kohle et al., 2003). Path-

ways involving members of the UGT1 superfamily act on

approximately 35% of all drugs metabolized by phase II

drug-metabolizing enzymes (Evans & Relling, 1999). Over

and above many rare polymorphisms in the UGT1A1 gene,

a common promoter region dinucleotide repeat (5–8 repeats;

UGT1A1*28) accounts for reductions in expression level

via alteration of transcription initiation (Bosma et al., 1995;

Guillemette, 2003). The polymorphism correlates with

lower protein levels and reduced conjugation activity (Fang

& Lazarus, 2004), and is implicated in toxicity to treatment

with irinotecan via altered glucuronidation of its active

metabolite SN-38 (7-ethyl-10-hydroxycamptothecin; Iyer et

al., 1999) and adverse reactions including neutropenia and

diarrhea (Iyer et al., 2002). UGT1A1*28 is relatively

frequent in many populations: Caucasian (~32%), Asian

non-Japanese (~15%), African (~41%), Italian (~36%;

Guillemette, 2003). A promoter region polymorphism in

UGT1A9 (UGT1A9*22) common in Japanese, Caucasians

and African-Americans has recently been associated with

higher expression via HepG2 reporter constructs, but related

enzyme induction or metabolism phenotypes are unreported

(Yamanaka et al., 2004).

Thiopurine (S)-methyltransferase (TPMT) is a prominent

example of how pharmacogenetics can impact individual

treatment. The enzyme is involved in the metabolism of

thiopurines: the cytotoxic drugs 6-mercaptopurine (6-MP)

and 6-thioguanine (6-TG), and the immunosupressant

azathioprine, which is rapidly converted to 6-MP. Amino

acid changing polymorphisms account for most of the
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variability in the RBC activity of TPMT, although their

frequency varies widely in different populations (Vuchetich

et al., 1995; McLeod & Siva, 2002). VNTR in the promoter

region of TPMT have been identified (Spire-Vayron de la

Moureyre et al., 1998, 1999) and suggested as modulators of

expression and thus enzyme activity (Fessing et al., 1998;

Spire-Vayron de la Moureyre et al., 1998; Yan et al., 2000;

Alves et al., 2001). These repeats appear to be in linkage

disequilibrium with the nonsynonymous alleles making

definitive declaration of their functional role difficult

(Marinaki et al., 2003).

N-acetyltransferases (NAT) catalyze acetyltransfer from

acetylcoenzyme A to an array of carcinogens and arylamine

and hydrazine drugs (e.g., para-aminobenzoic acid [PABA],

isoniazid, sulfamethazine, procainamide, nitrazepam, dap-

sone). The 2 human NATs, NAT1 and NAT2, are intronless

and so far have mainly nonsynonymous polymorphisms that

associate with enzyme activity (Hein et al., 2000; Butcher et

al., 2002). Slow acetylation genotypes correlate with adverse

effects after combined isoniazid and rifampicin therapy

(Ohno et al., 2000) and co-trimoxazole treatment (Zielinska

et al., 1998). The extent of N-acetylation also accounts for

variability in toxicity to amonafide treatment in cancer

patients, with rapid acetylators experiencing significantly

greater toxicity (Ratain et al., 1995). A relatively uncommon

allele (NAT1*16) is an AAA insertion and C to A

transversion in the 3VUTR region and correlates with

predicted structural variation, 2-fold lower expression and

a similar reduction in N-acetylation of substrates (de Leon et

al., 2000). Another 3VUTR variant NAT1*10 is suggested to

correlate with higher enzyme activity (Bell et al., 1995;

Payton & Sim, 1998), but this has not been supported in a

number of studies perhaps due to linkage with an amino acid

change not detected in some of the former assays (Bruhn et

al., 1999; de Leon et al., 2000; Hein et al., 2000).

The sulfotransferase (SULT) family forms sulfate con-

jugates with a variety of xenobiotics and endogenous small

molecules and now numbers 17 distinct genes (Freimuth et

al., 2004). Multiple studies report interindividual differences

in SULTexpression, drug-related response, and realization of

a heritable component (Reiter & Weinshilboum, 1982;

Bonham Carter et al., 1983; Weinshilboum, 1990; Glatt &

Meinl, 2004). Noticeably, no functional studies on noncoding

variants have been reported despite a substantial number of

such variants identified in sequencing studies (Freimuth et

al., 2001; Iida et al., 2001b; Glatt & Meinl, 2004).

A few aldehyde (ALDH) and alcohol (ADH) dehydro-

genases are responsible for 90% of the metabolism of

ethanol, a compound with potential for pharmacological

interactions. Well-known coding variants in ADH2 and

ALDH2 have been described which associate with resist-

ance to alcoholism. ADH4 is expressed in specific portions

of the GI tract (Vaglenova et al., 2003) and is essential for

vitamin A metabolism (Duester et al., 2003), but may also

have a role in first-pass metabolism of ethanol (Yin et al.,

2003). A reporter assay indicated that a single functional
promoter allele affects ADH4 expression (Edenberg et al.,

1999), and no coding variations were identified in a

subsequent sequencing study (Iida et al., 2002), but in vivo

characterizations of allelic protein or tissue level effects are

yet unreported. These examples show that further under-

standing of polymorphic expression in many types of genes

beyond the cytochrome P450 superfamily is important to

understanding the genetic basis of interindividual differ-

ences in drug responses.
4. Drug transporters

Modulation in drug transporter expression potentially

affects the uptake and efficacy of many compounds.

Numerous genes encode solute carriers (SLC families,

N300 genes) and the class of primary active ATP-binding

cassette (ABC) transporters (48 genes). Because of the size of

these gene families, we only address a few examples here.

The multiple drug resistance polypeptide ATP-binding

cassette, subfamily B 1 (ABCB1: MDR1, Pgp) is an

energy-dependent protein efflux pump that acts upon a wide

range of natural and pharmacological substrates (see review

Sun et al., 2004). A synonymous SNP (3435CNT) has been

associated with low expression and altered pharmacokinetics

in a number of studies (Hoffmeyer et al., 2000), but others

have reported conflicting results (Sakaeda et al., 2001) or

dismissed this as an unlikely functional SNP since it is not a

coding alteration. In these cases, it is suggested that a

functional allele (perhaps 2677GNA,T) must be in linkage,

with 3435CNT being an indicator SNP. However, the

synonymous polymorphism could affect mRNA structure,

stability, or translational efficiency. Recently, Takane et al.

(2004) conducted a functional analysis of ABCB1 variants.

They found 10 promoter variants (7 were novel), an

association of 3435CNT with lower expression, association

of promoter haplotypes with transcription level differences

independent of 3435CNT, a novel transcription factor binding

site which is disrupted in a haplotype correlating with lower

expression, and ruled out differences in methylation status as

a principal cause (Takane et al., 2004). Three promoter

variants found in rare haplotypes were associated with higher

transcriptional expression, including one (�129TNC) that

was previously reported to be associated with high transport

activity in hematopoietic stem cells (Calado et al., 2002).

While there are numerous studies associating ABCB1 poly-

morphisms with altered drug disposition and effect, these

results are often not reproducible in different populations.

This points to a lack of sufficient understanding of the

interaction among multiple genetic factors determining

ABCB1 expression and function.

Two noncoding polymorphisms of the serotonin trans-

porter (5-HTT) gene SLC6A4 have been studied extensively

based on allelic differences in expression in brain and other

tissues (Lesch et al., 1994; Heils et al., 1996; Hranilovic et al.,

2004). The contribution of serotonin neurophysiology to
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psychiatric disorders is great, and thus the impact of these

variants may be far-reaching. In particular, the short form of

the promoter region polymorphism (serotonin gene-linked

polymorphic region [5-HTTLPR]) correlates with lower

transcriptional and translational activity (Heinz et al., 2000;

Hranilovic et al., 2004), blunted fenfluramine-induced

prolactin release (Reist et al., 2001), greater amygdala

neuronal activity in response to fearful stimuli (Hariri et al.,

2002), poorer efficacy of antidepressants (e.g., citalopram,

Eichhammer et al., 2003; fluoxetine, Rausch et al., 2002;

paroxetine, Pollock et al., 2000), and antidepressant induced

mania in bipolar disorder (Mundo et al., 2001). The presence

of a genetic component to variability in response to

antidepressants is also suggested by family studies (e.g.,

O’Reilly et al., 1994). Contributions of this polymorphism to

variation in colonic uptake of alosetron (Scherl & Frissora,

2003) and heroin dependence (Gerra et al., 2004) have also

been suggested. However, there are dissenting results, and the

debate over the extent of the functional importance of these

alleles is yet to be settled. There are alternative alleles, splice

variants, and polyadenylation signals that might play roles

(Delbruck et al., 1997; Battersby et al., 1999; Michaelovsky

et al., 1999; Frisch et al., 2000; Nakamura et al., 2000; Cigler

et al., 2001; Sun et al., 2002) and significant population

differences in genotype to consider (Gelernter et al., 1999;

Lotrich et al., 2003).

The members of the organic anion-transporting polypep-

tide (OATP) superfamily, encoded by the solute carrier

organic anion transporter family (SLCO) genes, are broadly

expressed and mediate transport of a wide range of

endogenous and exogenous compounds including anions,

cations, neutral compounds, and peptidomimetic agents

(Tirona & Kim, 2002; Hagenbuch & Meier, 2004).

Regulatory region polymorphisms have been reported in a

number of SLCO genes (Iida et al., 2001a; Tirona & Kim,

2002). OATP-A (SLCO1A2) is expressed in brain capillary

endothelial cells suggesting a role in blood-brain barrier

permeability of solutes and this transmembrane protein

transports analgesic opoid peptides (Gao et al., 2000). There

is a SLCO1A2 SNP localized to a HNF1a binding site

(Kullak-Ublick et al., 1997), but there are no functional

reports on it or any of the identified nonsynonymous

polymorphisms in the gene (Source: dbSNP). A newer far

upstream polymorphism (�11187GNA) in OATP-C

(SLCO1B1) was associated with 98% higher clearance

(AUC) of pravastatin in Caucasian males and combined in a

haplotype (SLCO1B1*17) with coding polymorphisms

which exhibited a similar association (Niemi et al., 2004).

Drug transporters will likely provide further examples of

clinically relevant cis-regulatory polymorphisms.
5. Drug targets and receptors

Modulation of expression of drug targets is another

avenue for studying interindividual differences in therapeu-
tic response. In the field of cancer pharmacogenetics,

understanding the expression patterns in patients’ tumors

or their untransformed genomes in somatic cells can guide

selection or administration of treatment. The principal

downstream target of the common chemotherapeutic 5-

fluorouracil (5-FU) is thymidylate synthase (TYMS). Three

copies of a 28 bp tandem repeat (thymidylate synthase

enhancer region [TSER]*3) in the promoter of TYMS have

been associated with higher TYMS levels (Horie et al.,

1995) and poorer outcomes with 5-FU treatment (Horie et

al., 1995; Villafranca et al., 2001). Here, again, we see a

complex regulatory picture that needs dissection as further

polymorphisms show similar association: a SNP within the

TSER*3 (TSER*3RG) that abolishes a USF1 binding site

(Mandola et al., 2003) and a 3VUTR SNP now associated

with message stability (Ulrich et al., 2000; Mandola et al.,

2004). Inactivation of 5-FU is principally mediated via

dihydropyrimidine dehydrogenase (DPYD), and variations

in its activity can have fatal consequences (Van Kuilenburg

et al., 2002). A splice site transition (DPYD*2A) accounts

for some observed toxicity but has low frequency (b1%;

Wei et al., 1996). Despite description of many other

polymorphisms (Wei et al., 1996; McLeod et al., 1998;

Collie-Duguid et al., 2000), 5-FU toxicity remains only

partially understood. Other examples in cancer pharmaco-

genetics include applications of genotyping to treatment

with well-known tyrosine kinase inhibitors (e.g., herceptin;

Arteaga & Baselga, 2004). Functional explanations for these

stratifying mutations, often involving genomic instability

and high expression or loss of heterozygosity, are becoming

understood (Sordella et al., 2004).

Drug targets in the brain and the degree to which their

genetic variation explains differences in psychoses and their

treatment have been the focus of much research. A

synonymous 102CNT polymorphism of the 5-hydroxytrypt-

amine (serotonin) receptor 2a (HTR2A) was previously

proposed to associate with responsiveness to clozapine

(Arranz et al., 1998), implying that it is in linkage

disequilibrium with cis-acting regulatory polymorphisms.

However, using this SNP as a marker for measuring relative

allelic mRNA abundance, no difference in expression was

detected in adult brain tissues (Bray et al., 2004). This

argues against the presence of cis-acting regulatory poly-

morphisms. These findings do not address possible effects

on translation but do argue for a shift of focus in future

research on variants in this gene region.

An intriguing study in a large cohort of individuals

treated with pravastatin recently revealed a significant

association between reduction in low-density lipoprotein

(LDL) levels after treatment and 2 intronic SNPs in

the 3-hydroxy-3-methylglutaryl-coenzyme A reductase

(HMGCR) gene (Chasman et al., 2004). The SNPs are in

linkage disequilibrium but are not near intron-exon borders

or CpG dinucleotides. The functional explanation remains an

open question, but there is disequilibrium with a 3VUTR
variant present in mRNA, raising the possibility of altered
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pretranslational regulation. If a functional allele is identified

and generalized to other statins, it may help explain why a

significant proportion of treated individuals does not respond

readily to this blockbuster class of drugs (Schmitz &

Drobnik, 2003). There are no definitive genetic markers that

account for observed variations despite a number of non-

coding variations previously associated with differential

responses to statins (de Maat et al., 1999; Marian et al., 2000;

Zambon et al., 2001; Schmitz & Drobnik, 2003; Kajinami

et al., 2004).

These few transporter and receptor examples highlight

the important contribution regulatory polymorphisms will

play in defining genetic variability in pharmacokinetics and

pharmacodynamics. The identification of allelic differences

in key genes may also allow eventual targeting of sequence-

specific functional cis-regulatory polymorphisms (Fluiter et

al., 2003; Miller et al., 2003; Achenbach et al., 2004; Bruno

et al., 2004). Alternatively, general classes of cis-regulatory

variants may be targeted. For instance, aminoglycoside

antibiotics have been shown to inhibit proofreading activity

by misincorporating an amino acid and thus ameliorating

nonsense mutations through increased translational read-

through (Howard et al., 1996). Analysis of cystic fibrosis

genotypes among over 1000 known variants has thus been

used to select targeted therapy in a small, stratified

subgroup of the disease population (Wilschanski et al.,

2003).
6. Cis-acting polymorphisms in relevant trans-factors

While most genes harbor cis-acting changes relevant to

their expression, genetic variants regulating gene expression

in trans are likely to dominate interindividual variability in

mRNA expression profiles (Wittkopp et al., 2004). This

results from pleiotropic consequences on gene expression

by cis-acting polymorphisms that alter the function of

transcription factors, receptors, and other signaling mole-

cules. We therefore need to consider cis-acting polymor-

phisms within the genes encoding trans-factors influencing

drug-metabolizing enzymes, transporters and targets,

reflecting complex regulatory networks underlying pharma-

cogenetics phenotypes (Rushmore & Kong, 2002; Akiyama

& Gonzalez, 2003). Among the transcription factors, we can

distinguish between those determining constitutive expres-

sion, on the one hand, and factors mediating enzyme

induction, a common cause of temporal changes in drug-

metabolizing capacity. Key players in the regulation of

genes discussed in this review include members of the

nuclear hormone receptor superfamily (pregnane X receptor

[PXR], CAR, farnesol X receptor [FXR], HNF4a, perox-

isome proliferator-activated receptor alpha [PPAR-a], vita-

min D receptor [VDR]), and transcription factors—HNF1a,

HNF3, HNF6, CCAAT/enhancer binding proteins [C/EBP],

albumin D-site binding protein [DBP]; Akiyama & Gonza-

lez, 2003). Studies of human polymorphisms in these genes
may have important pharmacological implications, but

current understanding is immature.

For example, PXR stimulates transcription of a number

of drug-metabolizing enzymes (e.g., CYP3A4; Lehmann et

al., 1998; Goodwin et al., 1999; Schuetz et al., 2001; Tirona

et al., 2003), as well as ABCB1 in intestine (Geick et al.,

2001). CYP3A4 cis-variations do not adequately account for

observed drug phenotypes, thus implicating variability in

other factors such as PXR (Lamba et al., 2002). PXR

expression correlates with CYP3A subfamily expression

(Westlind-Johnsson et al., 2003). In vitro assays of PXR

variants encoding altered proteins have demonstrated

correlated changes in CYP3A4 expression, particularly in

response to rifampicin induction of the enzyme (Hustert et

al., 2001b; Zhang et al., 2001). However, these changes are

infrequent, and a heterozygous carrier of one such poly-

morphism showed normal CYP3A4 metabolism (Zhang et

al., 2001). Three silent mutations in PXR also correlated

with changes in its expression level (Zhang et al., 2001).

Moreover, PXR is also transcribed from an alternative

initiation codon (Bertilsson et al., 1998). A 6-bp deletion in

the promoter of this alternative transcript, hPAR-2, disrupts

a predicted HNF1a binding site and abolishes transcription

in a liver cell line, but again no human phenotype was

observed (Uno et al., 2003).

HNFs have a large role in the liver-specific enhancement

of transcription of many cytochromes (Akiyama & Gonza-

lez, 2003). HNF1a and HNF4a polymorphisms have been

widely scanned because of their relation with diabetes in

many populations (Ryffel, 2001), but associated effects on

drug phenotypes are not well investigated. Functional

HNF1a promoter polymorphisms, including one in a

putative HNF4 binding site have been described (Gragnoli

et al., 1997). Amino acid changes were recently shown to

result in a PTC and decreased protein stability through

nonsense-mediate decay (Harries et al., 2004). The docu-

mented role of HNFs in the expression of many genes of

pharmacological relevance (e.g., HNF4 regulation of

CYP3A4; Tirona et al., 2003) warrants further work on

the effects of polymorphisms in these trans-factors. Because

genes are regulated by multiple factors, often with over-

lapping specificity, characterization of the effects of

variation in trans factors remains a challenging task. Ideally,

for genes of critical pharmacological importance, we will

eventually arrive at a multivariate understanding that

accounts for variations at the target locus and variations

effecting the contextual trans-inputs to the locus.
7. Conclusion

Accounting for genetic components of variation in all

phenotypes must ultimately be done at cis-sequences with

pleoitropic effects reverberating in trans (Fig. 1). The

examples presented here demonstrate that as pharmacoge-

netics proceeds, continuing identification of novel cis-
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regulatory variants and their functional effects is necessary.

High-throughput genotyping for clinical pharmacological

applications is increasingly feasible, and screening panels

are easily developed, but the identification and selection of

relevant alleles lags behind. This process remains difficult

for reasons discussed here, including population-specific

sources of error, limits of experimental approaches, and the

challenges of investigating the many potential regulatory

modes, including accounting for epistasis and epigenetics. If

well-characterized genes are indicative, a few common

polymorphisms within a population will cover the bulk of

the genetic variation while many, less frequent polymor-

phisms will explain the rest. However, in genes that have

accumulated many mutations, such as CYP2D6, a complete

accounting of all functional polymorphisms is needed to

permit prospective clinical applications including drug

choice and selection of dosage. Because frequent null

mutations can combine with less frequent mutations on

the sister chromosome (compound heterozygosity), even

low-frequency variants may be clinically important. Hap-

lotyping may be effective in identifying key combinations

of polymorphisms, but insufficient marker density and

assumption of linkage over large sequences may lead to

missed functional alleles. The standardization of nomencla-

ture (Table 3) and integration of databases (Table 2) also

remain ongoing challenges as the number of marker and

functional alleles continues to increase. Appropriate meta-

analyses can also provide a bird’s-eye view of the most

important alleles within specific populations (e.g., Phillips et

al., 2001). Although newer drugs may evade cytochrome

metabolism, the examples given here demonstrate that many

classes of genes must be pursued as potential contributors to

interindividual differences in drug response, and efforts to

identify their functional cis-regulatory variants will have

lasting importance.
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